Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test
نویسندگان
چکیده
The Modified Smoothed Particle Hydrodynamics (MSPH) method proposed earlier by the authors and applied to the analysis of transient two-dimensional (2-D) heat conduction, 1-D transient simple shearing deformations of a thermoviscoplastic material, 1-D wave propagation in a functionally graded plate, and 2-D elastodynamic crack propagation is extended to the analysis of axisymmetric deformations of a thermoviscoplastic material. In the MSPH method, different shape functions are used to find kernel estimates of the function, and of its first and second derivatives. It differs from the classical finite element method in which derivatives of a function are usually obtained by differentiating the shape function used to approximate the function. It is shown that results computed with the MSPH method for the Noh problem agree well with its analytical solution. The MSPH basis functions can be used in any meshless method to numerically solve either static or dynamic problems. The method is then applied to analyze transient deformations of a cylindrical rod impacting at normal incidence a rigid smooth stationary flat plate. The computed solution is found to agree very well with those obtained by analyzing axisymmetric and 3-D transient deformations of the rod with the commercial code LS-DYNA. The final length of the deformed rod, the final radius of the impacted face, and the final length of the relatively undeformed portion of the rod for twelve test configurations computed with the MSPH method are also found to agree well with their corresponding experimental values. Published by Elsevier Inc.
منابع مشابه
A MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملOn the Calculation of Deflection of a Semitrailer Chassis under Various Loading Conditions: an Experimental and Numerical Investigation
In this paper, a simple approach is presented for the calculation of deflection of a semi trailer chassis since the less deflection become a unique selling point of a semi trailer. First of all, by using the 3D data of the chassis a function for the moment of inertia of the cross section is created and then the chassis is modelled as a Euler Bernoulli Beam. Different loading conditions coming f...
متن کاملSymmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems
We discuss the symmetric smoothed particle hydrodynamics (SSPH) method for generating basis functions for a meshless method. It admits a larger class of kernel functions than some other methods, including the smoothed particle hydrodynamics (SPH), the modified smoothed particle hydrodynamics (MSPH), the reproducing kernel particle method (RKPM), and the moving least squares (MLS) methods. For f...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملModified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008